首页> 外文OA文献 >Quenched invariance principles for the random conductance model on a random graph with degenerate ergodic weights
【2h】

Quenched invariance principles for the random conductance model on a random graph with degenerate ergodic weights

机译:a上随机电导模型的猝灭不变原理   具有退化遍历权重的随机图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a stationary and ergodic random field $\{\omega(e) : e \in E_d\}$that is parameterized by the edge set of the Euclidean lattice $\mathbb{Z}^d$,$d \geq 2$. The random variable $\omega(e)$, taking values in $[0, \infty)$ andsatisfying certain moment bounds, is thought of as the conductance of the edge$e$. Assuming that the set of edges with positive conductances give rise to aunique infinite cluster $\mathcal{C}_{\infty}(\omega)$, we prove a quenchedinvariance principle for the continuous-time random walk among randomconductances under relatively mild conditions on the structure of the infinitecluster. An essential ingredient of our proof is a new anchored relativeisoperimetric inequality.
机译:我们考虑由欧几里得格$ \ mathbb {Z} ^ d $,$ d \ geq 2的边集参数化的平稳且遍历遍历的随机字段$ \ {\ omega(e):e \ in E_d \} $ $。随机变量$ \ omega(e)$的取值为$ [0,\ infty)$,并且满足一定的矩范围,被认为是边$ e $的电导。假设具有正电导的边集产生唯一的无限簇$ \ mathcal {C} _ {\ infty}(\ omega)$,我们证明了在相对温和条件下随机电导的连续时间随机游动的淬灭不变原理在无限集群的结构上。我们证明的重要组成部分是新的锚定相对等距不等式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号